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Abstract—Some complex musical parameters might be espe-
cially difficult to understand for someone with no theoretical
expertise in music. Musicians and music scholars alike normally
evaluate such parameters visually by departing from scores,
which present the musical events at once. Yet for the under-
standing of such symbolic representations, musical training is
essential, making scores mostly incomprehensible for amateurs.
Data visualisation has been applied to meaningfully represent
complex musical parameters, thus enabling music amateurs to
grasp concepts such as texture or structure. Although scores
are one of the “primary” sources to understand music, previous
work shows a strong bias towards the visualisation of acoustic
data, in detriment of the visualisation of symbolic information.
To bridge the gap, we present SymPlot, a web-based open
source tool to automatically visualise textural density, scoring,
and structure from MusicXML files. Due to the multidisciplinary
nature of the topic, in this project we have applied the Scrum’s
agile methodology, an iterative incremental approach specifically
tailored for interdisciplinary projects. The tool, aimed at en-
hancing musical understanding in amateurs and students, as
well as in scholars of other disciplines who need to incorporate
music into their discourses, i.e., historians, philologists, etc.,
enables visualisation of local features at various hierarchical
levels, highlighting similarities both within and across scores.
Our evaluation of SymPlot—based on a five-level rating-scale
test performed by 50 participants—suggests that colours increase
users’ understanding of complex musical parameters.

Index Terms—visualisation, music, data science, digital human-
ities, score, computational musicology, symbolic music data

I. INTRODUCTION

Upon listening, non-trained users are normally able to detect

the structure of a given song by noticing easily graspable

musical elements, e.g., the lines of the lyrics or the repe-

titions of musical motives or themes [1]. Nevertheless, the

comprehension of complex musical forms may require a level

of abstraction that goes beyond pure listening; indeed, expert

users normally resort to musical scores as the main source

for analysing and understanding musical structure. Music

scores widely spread in open-access web-repositories, are

however, owing to their complexity, often incomprehensible

for amateurs and music lovers. In this context, computational

techniques can be applied to enhance musical understanding

[2].

This paper is part of the Didone Project that has received funding from
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme, Grant agreement No. 788986

Data mining is an integral part of data science [3], its goal

being to convert reliable data into meaningful information [4].

Typically, data mining tasks involve data visualisation, which

allow users to explore the information graphically and to find

trends—the lower the cognitive effort required to understand

the graph, the higher its value [5]. In the humanities, linguistic

data have been successfully visualised to improve understand-

ing of narrative [6]. Similarly, in the field of Music Information

Retrieval (MIR), data visualisation has been thrivingly applied

in plotting a variety of musical attributes, e.g., key [7],

structure [8], or timbre [9]. Nevertheless, these works show

a marked preference for audio data, while symbolic ones

have been disregarded almost completely [10]. Furthermore,

despite musical parameters’ intrinsic interdependence, e.g.,

that between texture, scoring, and structure [1], [11], the

conjunct visualisation of these elements remains unexplored.

In this work we present SymPlot,1 a web-based open

source tool aimed at facilitating, by graphical means, the un-

derstanding of musical texture, scoring, and structure, as well

as the interactions between them. In order to achieve meaning-

ful visualisation of these elements from symbolic data, close

collaboration between computer scientists and musicologists

was essential. For this reason, this work adopts the Scrum’s

agile methodology [12], [13], chosen as the most adequate

to face such a multidisciplinary project. To disseminate the

use of the tool across a wide range of users, we distribute

it through a freely accessible user-friendly web-tool (built

with Python’s2 Flask3) that automatically generates a variety

of visualisations from MusicXML [14] files. Although our

system is primarily oriented towards pedagogical applications,

it is also conceived as a navigational tool to support musical

listening as well as analytical tasks performed by musicians

and scholars.

The rest of the manuscript is structured as follows: Sec-

tion II outlines the state of the art; Section III defines the

relevant musical parameters; Section IV discusses the method-

ology; Section V exposes the MIR-based visualisation system;

Section VI explains the visualisations, Section VII evaluates

the web-tool; and Section VIII presents our conclusions.

1http://symplot.iccmu.es/
2https://www.python.org/
3https://palletsprojects.com/p/flask/
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II. STATE OF THE ART

Research in digital humanities has been criticised for its

strong bias towards data extraction and processing in detri-

ment of data interpretation and analysis [15]. In an attempt

to address this limitation, the automatic representation of

time-dependent information through visual means has been

considered in a variety of areas in the Humanities [15]. For

instance, previous work on dialogue [16] and story-telling

[6] has shown how useful data visualisation can be in the

study of narratology. Similarly, in the musical domain, related

computational techniques have also been employed to explore

a variety of musical parameters, such as timbre [9], [17], key

[7], musical structure [8], and performative aspects [18], [19],

such as musician’s expressive strategies [20], which can be

visualised with the Scape-plot web-tool 4. Nevertheless,

most of these works—and in general most of the research

outcomes from computational musicology—show a preference

for audio data, while symbolic musical representations have

received significantly less attention [10].

Regardless of the source type (audio or symbolic) employed,

technical comprehension of music necessarily requires the

understanding of a variety of musical features and their

interactions. For instance, although texture is an essential

aspect of music, the study thereof as a separate element has

rarely been deemed as meaningful [21], mainly due to its

close interdependence with other musical parameters, such

as scoring and structure. Indeed, complex textures, such as

accompanied melody [22], are grasped more easily when

the various lines are distributed among instruments and/or

voices with contrasting timbres than when played in a simple

polyphonic instrument, e.g., the piano. This is the case of

Schubert’s song cycle Winterreise for voice and piano [23] in

comparison with Mendelssohn’s Lieder ohne Worte for piano

[24]. Orchestral timbres have been both classified [25] and

visualised [17]. Similarly, even though musical structure might

be independent from texture, alterations in the latter commonly

influence the understanding of the former [21].

Recent focus on texture, scoring, and structure in the field

of music analysis has promoted an increasing interest in the

application of computational methods to retrieve them from

symbolic data. Despite the fact that Machine Learning (ML)

techniques have been profitably applied to detect and classify

different types of texture in scores, such as homophonic and

polyphonic ones [21], the graphical representation of texture

has not yet been performed. Similarly, methods for retrieving

and graphically representing musical structure through score-

based computational methods have been developed [26]. Due

to the intrinsic relationship between scoring and structure, the

two parameters have been jointly visualised [27], resulting in

freely-accessible web-tools such as Orcheil5. Yet, in spite

of the direct influence of texture and scoring in the emergence

of musical structure [21], [22], these three elements have not

yet been visually represented in conjunction.

4http://www.mazurka.org.uk/software/online/scape/
5http://orcheil.ca/

III. MUSICAL PARAMETERS

Musical scores are codified in a bi-dimensional space, with

the passing of time being represented along the horizontal axis

(the musical events are unidirectionally sorted from left to

right), and frequency along the vertical one: within a staff,

higher pitches are represented at the top, and lower ones at

the bottom; similarly, within each instrumental family (e.g.,

woodwinds or strings) on an orchestral score, instruments with

higher ambitus appear on the top staves. Abstract musical

elements to be performed (e.g., character or speed) are encoded

within this hyper-plane, along more subjective indications,

such as expressive marks (e.g., dolce or allegro). Textural and
timbral density, which respectively emerge from the number of

different melodic lines and the number of instruments and/or

voices performing these (i.e., the scoring), can be retrieved

from scores too. Critically, besides pitch, rhythm, and other

essential musical features, textural and timbral density, as well

as scoring, can also be relevant in the conformation of musical

structure.

A. Textural Density

The concept of textural density in music refers to the

number of different musical lines in a given composition [28];

from now on we will refer to these musical lines simply as

lines. The number of lines determines whether textural density

is dense, moderate or sparse, with the sparsest textural density

corresponding to monophonic compositions, i.e., with one line

only, and the densest to works with a high number of differ-

entiated lines, such as complex orchestral pieces. A single line

may be played/sung by one or more instruments/voices (each

of which being a part). Therefore, it is related to scoring. To

study this relation, we have also defined the notion of timbral

density.

B. Scoring and Timbral Density

We define scoring as the specific combination of a complex

of sounding parts (e.g., the instruments of an orchestra) [29],

i.e., the specific instruments and/or voices for which a given

piece of music is written—each of the instruments and/or

voices are termed a part. Scoring, then, relates to the notion

of “instrumentation”; yet, besides denoting the selection of

instruments for a musical composition [29], scoring takes into

account vocal parts too. In a musical work, several instruments

or voices may play or sing at the same time, i.e., in a musical

composition, there may be a fluctuating number of parts, as

determined by the scoring for each specific passage. This

determines the timbral density: the higher the number of parts

sounding at the same time, the denser the timbral density, and

vice versa. In music, timbre is abstractly defined as the tonal

quality particular to each instrument or voice. As each of the

individual instruments/voices has its own specific timbre [30],

this parameter is directly determined by the scoring of the

piece.

535



C. Structure and Form

We can understand musical structure as the organisation of

the musical materials in a given piece, resolved into relatively

simpler constituent units that appear and sometimes re-emerge

throughout the musical composition [30]. Musical structure

defines form, which can be seen as the division of a structure

in finite sections and their relations, sometimes in the manner

of well-known schemes [31]. Some examples of such moulds

are the sonata, rondo, and ternary forms [32]. Among the latter,

the da capo and dal segno types stand out, with respectively a

complete or an abridged repeat of the opening materials after

a contrasting central section.

Research has shown that listeners perceive abstract struc-

tural information from acoustic musical features in a bottom-

up manner [33] and that changes in texture, and therefore in its

density, can also influence the perception of formal boundaries

[1]. Therefore, it is easier to grasp the musical structure of a

given piece by studying elements that go beyond the pitch and

rhythmic conformation of the materials [34]. In other words,

both textural and timbral density, in turn influenced by scoring,

are factors of structural influence in music.

IV. METHODOLOGY

In order to maximise the success of this multidisciplinary

project, we followed the Scrum’s agile methodology [12],

particularly suited to efficiently handle the interaction between

different fields, in our case musicology and computer science.

The Scrum’s agile methodology [13] is an iterative incremental

approach in which a refined version of the outcome from the

previous iteration is released at every iteration, i.e., at every

sprint. This methodology serves to guide the efforts towards

realistic goals through a progressive improvement of the result

at each sprint, which promotes motivation and improves a

mutual understanding within multidisciplinary groups. Each

of the sprints was articulated in four phases: design (led by

the musicologist), development and test (led by the computer

scientist), and validation (led by the musicologist). In the

present work, a total of four sprints were considered, and a

specific goal was collaboratively defined for each of them. In

the first sprint, the relationships between textural density and

scoring across measures was highlighted —sparse and dense

textures were represented with a lower or higher number of

divergent graphical lines (from now on we will refer to the

graphical lines as stripes); each instrumental/vocal part was

represented with a different colour. In the second sprint, the

output from the first sprint was simplified by representing

the textural density through the graph width (the wider, the

higher the number of lines), and the timbral density—relating

the scoring—through a grey scale (the darker, the more parts

playing/singing the line). Furthermore, in this sprint, struc-

tural information was added using alphabetic labels and the

indication “Introduction” when pertinent, a typical praxis in

music theory. In order to enable comparison across scores,

in the third sprint the output from the previous one was re-

scaled by modifying the measurement unit from measures to

quaver beats. Finally, to give users the possibility of focusing

Fig. 1. Example of repeat expansion. Above (staff A), the repetition of the
first two measures is indicated trough the repeat mark D.C. al Fine; below
(staff B), the expanded representation, i.e., without repeat marks, is given.

on each specific parameter, in the fourth sprint the parameters

previously evaluated were individually visualised on the same

criteria as in the second sprint but displayed in separated

graphs. Although every sprint took the output of the previous

one as the departure point, the goal of each iteration was not

necessarily to evolve towards a better solution, but to develop

a complementary one; indeed, the output from each sprint is

useful on its own.

V. MIR SYSTEM

Due to the importance of textural density, scoring (as

well as the related timbral density), and structure in music

analysis, this work aims to facilitate the understanding of these

parameters through their visual representation. In every sprint,

the following phases were carried out: data extraction, data

preprocessing, and information retrieval.

A. Data Extraction

In this phase, the symbolic data, digitally encoded in

MusicXML format [14], was processed using the Python’s

library music21 [35] in order to extract the selected musical

parameters. This stage returned a Python structured object in

which all the information of the score was codified. In the

subsequent phases of every sprint, the number of lines (i.e.,

textural density) is determined by evaluating the relationship

between time-dependent musical information and the number

and type of parts in a score (i.e., scoring), while the structure

is retrieved on the basis of the repeat signs.

B. Data Preprocessing

This phase takes as input the Python’s object obtained in

the previous one and optimises it for its further utilisation.

Essentially, since repeat signs (repeat bars and repeat marks)

constrict structure visualisation, in this phase those signs were

“expanded”, i.e., the music that is to be repeated in perfor-

mance but which is written down only once was rewritten

in the corresponding position of the time-line, cf. Figure 1.

Even though a repeat expander method has been already imple-

mented in music21, i.e., the musci21.repeat.Expander,6

by the time this project was developed, scores with complex

nested repeats were not properly handled by the mentioned

method. In order to face this limitation, an algorithm to expand

repeat bars with several endings (i.e., the bars for first and

second endings) and repeat marks with different indications

(e.g., Al Segno or D.C al Fine) was developed.7

6https://web.mit.edu/music21/doc/moduleReference/moduleRepeat.html#
music21.repeat.Expander

7https://github.com/DIDONEproject/Repetitions-Expander
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C. Information Retrieval

In this phase, to reduce the processing time as much as

possible when handling large amounts of data, the compu-

tational effort was optimised by choosing the most efficient

data structures. A hash table was considered, storing the time

slice unit as key (i.e., a bar or a quaver beat), and another

hash table as value. This internal key-value pairs contained

the notes played during that time slice as keys (each note was

represented with a tuple containing its name and duration),

and the scoring as value (i.e., the instrument/voice or group of

instruments/voices playing/singing each note). In Equation (1)

the inner hash table is represented, where: ni stands for notes

and instruments; x for time slice unit; n and d for note name

and duration; and instr for the instrument name.

nix =

⎧⎨
⎩
[(n, d), ...] : [instr1, instr2, ...]

[(n, d), ...] : [instr3, ...]
...

⎫⎬
⎭ (1)

By doing this, each hash table key, i.e., each tuple con-

taining the note’s name and duration, was correlated to with

a different line, which served to determine the number of

lines played/sung at each specific time slice. To “translate”

the concept of textural density into a sort of quantitative

measurement, to be graphically represented, the number of

performed lines was extracted for each time slice. Equation (2)

shows the computation needed to obtain such a measurement,

where x stands for the time slice unit, ni refers to the main

hash table, and len indicates length.

textureDensx = len(nix) (2)

Timbral density, as determined by the number of instru-

ments/voices sounding simultaneously, is computed by adding

the length of the instrument’s lists respective to each line

for each time slice, previously defined in our hash table.

Equation (3) shows the computation needed to obtain the

timbral density, where z indicates the line, z.value refers to the

list of instruments playing each line, ni stands for the main

hash table, len indicates length, and sum demotes summation.

timbralDensx = sum(len(z.value) for z in nix) (3)

Finally, to determine the musical structure, a script based

on the repeat marks previously retrieved (cf. Section V-B),

was developed. Basic ternary forms, such as the da capo form

(ABA), as well as other more complex, such as different dal
segno designs (e.g., Intro-ABA or AA’BA’) can be automati-

cally retrieved with our tool. Nevertheless, the recognition of

structural information that does not depend on repeat sings,

such as the end of the development section in Sonata forms,
has not yet been implemented.

VI. SYMPLOT VISUALISATIONS

Like on musical scores, all the generated graphs visualise

the information within a bi-dimensional space, where the time

line (indicated as bars or quaver beats) is represented across

the horizontal axis, and the texture related information, i.e.,

performed lines (in the first sprint) and textural density (in

Fig. 2. Snippet of visualisation 1. Across bars (indicated from bar 77 to bar
85), parts are represented with coloured stripes, whereas lines correlate with
the stripes’ position (a line is shown as joined or separated stripes). Vertical
marks across the scoring indicate page breaks in the MusicXML source.

the subsequent sprints), is given in the vertical axis. Colours

where considered to highlight other musical properties, such

as scoring. As indicated in Section IV, SymPlot generates

four different visualisations, each resulting from one sprint.

To generate these, the Python’s libraries Matplotlib8 and

Seaborn9 were used. All the visualisation examples shown

in this section are based on a MusicXML codification of the

aria “Son regina e sono amante”, from the opera Didone
abbandonata (music by Domenico Natale Sarro, 1724), the

XML of which can be found in GitHub 10.

A. Visualisation 1

In this visualisation, changes in textural density and scoring

are represented over bars. A different colour is assigned to

each part (instrumental or vocal), and every line is indicated

by a unique position in the graph’s vertical axis. When a given

line is performed by several parts, the graph would display

the coloured stripes for those parts joined together, showing a

convergent disposition (cf. Figure 2, bar 82, Viole and Bassi).

On the contrary, when each line is performed by one part, all

stripes would be represented separately in their corresponding

coordinate, showing a divergent disposition (cf. Figure 2, bars

83–85, Viole and Bassi). Elements aimed to facilitate naviga-

tion within the graph, such as time and key signatures, as well

as vertical marks regularly indicating the page breaks, were

also considered (cf. Figure 2). This visualisation, showing

every line in relation to the scoring, promotes an intuitive

understanding of orchestration principles, e.g., by highlighting

which instruments commonly play the same melody.

8https://matplotlib.org/
9https://seaborn.pydata.org/
10https://github.com/DIDONEproject/SonRegina-Sarro
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Fig. 3. Visualisation 2. Textural and timbral density (represented through the graph’s vertical width and the grey shadowing respectively), and structure
(indicated with labels at the top of the graph; the introduction is squared in red) are represented across bars.

Fig. 4. Snippet of visualisation 3. Textural and timbral density (represented
through the graph’s vertical width and the grey shadowing respectively),
structure (indicated at the top of the graph), and bars (numbers and boundaries
marked in red), are represented across quaver beats (displayed until the 24).

B. Visualisation 2

This visualisation represents how the textural and timbral

density change over a given piece, indicating the latter’s struc-

ture too. Textural density is represented by the graph’s vertical

width (i.e., the higher the number of lines, the wider the

graph), while the timbral density is indicated by a grey scale

(i.e., the higher the number of parts, the darker the colour).

At the top of the graph the score structure is given, indicating

each section with a different label—note that only musical

forms determined by repeat marks are currently retrieved (cf.

Section V-C). Beyond the graph’s vertical width, in order not

to lose perspective when enlarging the graph in a specific

position, the number of lines is also indicated in the middle

of the graph.

This graph highlights the relationship between the textural

and the timbral densities, connecting them, at the same time,

with musical structure. In Figure 3 an example of this visu-

alisation is given, showing that in the introduction section of

the composition in question, areas equal in vertical thickness

show dissimilar grey tonalities, meaning that they have the

same number of lines but different number of parts. This

visualisation can be particularly revealing when having, for

instance, just one line (i.e., a small height width) but a dark

grey, meaning that many parts are playing a single line at

unison. Furthermore, when analysing more than one score at

a time (i.e., by selecting several MusicXML files in the web-

tool), in order to encourage the detection of commonalities, a

pdf file containing all the graphs consecutively is created. To

enable fair comparison between them, the grey scale employed

in the multi-graph visualisations was standardised, meaning

that each graph’s grey scale was normalised, process carried

out by determining the maximum timbral density across the

evaluated scores and assigning the darkest shadowing to it, i.e.,

black, while the remaining values were computed according

to this maximum.

C. Visualisation 3

This visualisation, represents, like visualisation 2, musical

structure and textural and timbral density, yet in this case

across quaver beats instead of bars. Again, textural and timbral

density are represented through the graph’s vertical width and

grey shadowing respectively, and a normalised grey scale was

also considered for the multi-graph visualisations. The goal

of this visualisation is to enable fair comparison between

scores in different metres alike on the basis of a common

measurement unit (i.e., a quaver beat). To avoid discordances

in the graphs’ lengths, the graph length is determined by

the number of beats (which depends on the number of bars

and the time signature)—note that in the visualisation 2 the

graph length is determined by the number of bars (without

considering the time signature). In order to respect scores’

graphical subdivisions, a guideline indicating bar boundaries

is also displayed along with their numbering (cf. red dotted

line in Figure 4).

D. Visualisation 4

Finally, in the last visualisation, graphs “complementary” to

visualisation 2 (Figure 3) are given to individually represent

certain features. This enables the user to focus on the specific

musical parameters that were previously shown in combi-

nation, i.e., textural density (graph’s vertical width), timbral

density (grey shadowing), and structure (labels at the top

of the graph). Two complementary graphs were considered:

Visualisation 4–A, which shows changes in textural density

and structure across bars (cf. Figure 5); Visualisation 4–B,

which represents through a colour map concise information

concerning timbral density, similarly across bars (cf. Figure 6).

These graphs enable easier and simplified understanding of the

previous visualisations.

VII. SYMPLOT USAGE & EVALUATION

In order to allow users to graphically represent scores,

we have created a user-friendly web-tool, in which they can

choose among a variety of scores and the described visual-

isations (cf. Section VI) are automatically generated in pdf

format, after the execution in the server-side of the processes
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Fig. 5. Snippet of visualisation 4–A. Textural density and structure are
indicated, across bars (until bar 66), through the graph’s vertical width and
with the various labels at the top of the graph, respectively.

discussed in Section V. The web-tool, built with Python’s

Flask, is hosted on Heroku,11 and uses the Google Drive

API12 under PyDrive as file storage service.13 The web page

consists of a simple design with a file selector and a short

description of SymPlot’s purposes. After choosing the files to

work with (up to four, to avoid the server overload), the system

is started. During the running time, status signs are shown

next to the file names, indicating the process’ development.

At the starting point, a loading icon is shown; nevertheless, as

the system is being executed, a �(success) or × (error) will

be displayed. Once the execution is completed, a download

button, leading to a Google Drive folder with the results, will

be available. If the user chooses more than one file, multi-

graph visualisations will be also automatically generated along

with the individual visualisations.

To evaluate the efficiency of the visualisations presented in

this paper, users’ perceived improvement on their understand-

ing of the considered musical concepts, i.e., textural density,

timbral density, and structure, was assessed. A total of 50
participants (25 with basic or no previous musical knowl-

edge and 25 expert musicians), evaluated each visualisation

through a five-level rating scale: 1 stands for “the visualisation

does not helps at all” and 5 for “the visualisation is very

useful”. Users’ responses showed no significant differences

among visualisations 2 to 4, indicating that these are similarly

understood by the participants regardless of their musical

expertise: Welch’s t-test yielded for the three comparisons

p ≥ 0.37; t ≤ −0.89; and mean score values between 3
and 4 (3.12 ≤ mean ≤ 3.80). In contrast, valorisation of

visualisation 1 diverged among non-expert and expert users,

being rated significantly higher by the latter: Welch’s t-test

yielded p = 0.02; t = −2.40; and mean = 3.92 for non-

experts, mean = 4.44 for experts. Negative t for all the

comparisons indicates that the non-expert group perceived the

visualisations less understandable than the expert group. Yet,

this difference was minimal for the visualisation 2 to 4: mean
difference of 0.24, 0.28, and 0.20, for visualisations 2, 3,

and 4, respectively; slightly higher for visualisation 1: mean
difference of 0.52. This is due to the fact that visualisation

1 is specially clear for expert users (it is the only one with

an average rating higher than 4), but also the best understood

by non experts, which may indicate that colour is a useful

variable to increase visualisation comprehensibility.

11https://www.heroku.com/
12https://developers.google.com/drive
13https://pythonhosted.org/PyDrive/

Fig. 6. Snippet of visualisation 4–B. Timbral density is represented, across
bars (until bar 66), through a colour map. Darker colours indicate a higher
number of parts, whereas lighter tonalities stand for fewer parts.

VIII. CONCLUSIONS AND FUTURE WORK

With the development and test of SymPlot we showed

that visualising a musical score by mapping time and other

musical-related dimensions, e.g., scoring, into a graphical

space, is greatly effective for the comprehension of specific

musical aspects, such as textural density, timbral density,

and structure. Distributed as a user-friendly web-based tool,

SymPlot aims to improve the overall understanding of a

musical piece, for instance by supporting non-trained users in

keeping track of a song while it is being played. The presented

visualisations enable users to anticipate the events while being

aware of its general structure, encouraging thus a listening

experience of higher quality. Besides amateurs and music

lovers, also technicians, professional musicians, and music

teachers could benefit from SymPlot in their activities, as

the tool offers an intuitive way to understand complex musical

concepts such as structure, texture, and timbre.

One of the main limitations of SymPlot is that only

musical structures defined by repeat marks can be currently

retrieved, while those implicitly indicated by other musical

parameters, such as harmonic modulations or melodic vari-

ations, are not yet automatically identified. In this regard,

one of our main priorities in the near future will be to

develop a tool capable of detecting both theoretically-codified

implicit formal moulds too, such as sonata or rondo forms,

and hierarchical structures, i.e., each section’s inner structure

within bigger forms. We also plan to integrate performance

duration of scores according to tempo indications. In this

manner, two scores with equal time signature and number

of bars but with different tempo markings would result into

graphs of different length; the “performance” duration would

be indicated too. In other words, the integration of tempo

marks as factor for analysis will generate more precise and

less abstract visualisations. Finally, since the use of colours

has shown to encourage users’ comprehension, we also plan

to use them, instead of the grey scale, to highlight composers’

resorting to specific instrumental families. More specifically,

primary colours will be assigned to the different families in

order to be able to produce clearly graspable colour mixing. In

this manner, parts from different families playing/singing at the

same time would be represented through secondary colours,

as determined by the combination of the primary colours of

their respective families, instead of through darker shadowing.

The maintenance of the Web Tool as well as its migration to

a computationally more powerful server will be carried out.

In this manner we will overcome the present limitation on the

maximum number of files to be submitted to Symplot.
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